Ando, F. et al. Statement of superconducting diode impact. Nature 584, 373–376 (2020).
Miyasaka, Y. et al. Statement of nonreciprocal superconducting essential area. Appl. Phys. Categorical 14, 073003 (2021).
Wakatsuki, R. et al. Nonreciprocal cost transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).
Yasuda, Ok. et al. Nonreciprocal cost transport at topological insulator/superconductor interface. Nat. Commun. 10, 2734 (2019).
Itahashi, Y. M. et al. Nonreciprocal transport in gate-induced polar superconductor SrTiO3. Sci. Adv. 6, eaay9120 (2020).
Daido, A., Ikeda, Y. & Yanase, Y. Intrinsic superconducting diode impact. Phys. Rev. Lett. 128, 037001 (2022).
Yuan, N. F. Q. & Fu, L. Supercurrent diode impact and finite momentum superconductors. Proc. Natl Acad. Sci. USA 119, e2119548119 (2022).
He, J. J., Tanaka, Y. & Nagaosa, N. A phenomenological principle of superconductor diodes. New J. Phys. 24, 053014 (2022).
Lyu, Y.-Y. et al. Superconducting diode impact through conformal-mapped nanoholes. Nat. Commun. 12, 2703 (2021).
Aladyshkin, A. Yu., Fritzsche, J. & Moshchalkov, V. V. Planar superconductor/ferromagnet hybrids: anisotropy of resistivity induced by magnetic templates. Appl. Phys. Lett. 94, 222503 (2009).
Aladyshkin, A. Yu. et al. Reverse-domain superconductivity in superconductor-ferromagnet hybrids: impact of a vortex-free channel on the symmetry of I–V traits. Appl. Phys. Lett. 97, 052501 (2010).
Wu, H. et al. The sphere-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).
Zhu, Y., Pal, A., Blamire, M. G. & Barber, Z. H. Superconducting alternate coupling between ferromagnets. Nat. Mater. 16, 195–199 (2017).
Li, B. et al. Superconducting spin change with infinite magnetoresistance induced by an inner alternate area. Phys. Rev. Lett. 110, 097001 (2013).
Baek, B., Rippard, W. H., Benz, S. P., Russek, S. E. & Dresselhaus, P. D. Hybrid superconducting-magnetic reminiscence system utilizing competing order parameters. Nat. Commun. 5, 3888 (2014).
Obi, Y., Ikebe, M., Wakou, H. & Fujimori, H. Superconducting transition temperature and dimensional crossover in Nb/Co and V/Co multilayers. J. Phys. Soc. Jpn 68, 2750–2754 (1991).
Monton, C., de la Cruz, F. & Guimpel, J. Magnetic habits of superconductor/ferromagnet superlattices. Phys. Rev. B 75, 064508 (2007).
Banerjee, N. et al. Controlling the superconducting transition by spin-orbit coupling. Phys. Rev. B 97, 184521 (2018).
Misaki, Ok. & Nagaosa, N. Principle of the nonreciprocal Josephson impact. Phys. Rev. B 103, 245302 (2021).
Baumgartner, C. et al. A Josephson junction supercurrent diode. Nat. Nanotechnol. 17, 39–44 (2022).
Davydova, M., Prembabu, S. & Fu, L. Common Josephson diode impact. Sci. Adv. 8, eabo0309 (2022).
Bauriedl, L. et al. Supercurrent diode impact and magnetochiral anisotropy in few-layer NbSe2. Preprint at arXiv https://doi.org/10.48550/arXiv.2110.15752 (2022).
Ando, F. et al. Fabrication of noncentrosymmetric Nb/V/Ta superlattice and its superconductivity. J. Magn. Soc. Jpn 43, 17–20 (2019).
Ando, F. et al. Investigation of the higher essential area in artificially engineered Nb/V/Ta superlattices. Jpn. J. Appl. Phys. 60, 060902 (2021).
Wakatsuki, R. & Nagaosa, N. Nonreciprocal present in noncentrosymmetric Rashba superconductors. Phys. Rev. Lett. 121, 026601 (2018).
Curran, P. J. et al. Repeatedly tunable essential present in superconductor-ferromagnet multilayers. Appl. Phys. Lett. 110, 262601 (2017).
Baur, E. et al. Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si. Phys. Rev. Lett. 92, 027003 (2004).
Kaur, R. P., Agterberg, D. F. & Sigrist, M. Helical vortex part within the noncentrosymmetric CePt3Si. Phys. Rev. Lett. 94, 137002 (2005).
Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).
Naritsuka, M. et al. Extraordinarily strong-coupling superconductivity in synthetic two-dimensional Kondo lattices. Phys. Rev. B 96, 174512 (2017).
Blaha, P. et al. WIEN2k: an Augmented Airplane Wave Plus Native Orbitals Program for Calculating Crystal Properties (Techn. Universität, 2018).
Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).