Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. Designing polymers for superior battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).
Mindemark, J., Lacey, M. J., Bowden, T. & Brandell, D. Past PEO—different host supplies for Li+-conducting strong polymer electrolytes. Prog. Polym. Sci. 81, 114–143 (2018).
Cui, G. Cheap design of high-energy-density solid-state lithium-metal batteries. Matter 2, 805–815 (2020).
Yue, L. et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Power Storage Mater. 5, 139–164 (2016).
Angell, C. A., Liu, C. & Sanchez, E. Rubbery strong electrolytes with dominant cationic transport and excessive ambient conductivity. Nature 362, 137–139 (1993).
Alarco, P. J., Abu-Lebdeh, Y., Abouimrane, A. & Armand, M. The plastic-crystalline part of succinonitrile as a common matrix for solid-state ionic conductors. Nat. Mater. 3, 476–481 (2004).
Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).
Wang, Y. et al. Stable-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).
Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite progress utilizing cross-linked polyethylene/poly(ethylene oxide) electrolytes: a brand new method for sensible lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).
Hu, P. et al. Progress in nitrile-based polymer electrolytes for top efficiency lithium batteries. J. Mater. Chem. A 4, 10070–10083 (2016).
Wang, C. et al. Excessive polymerization conversion and secure high-voltage chemistry underpinning an in situ fashioned strong electrolyte. Chem. Mater. 32, 9167–9175 (2020).
Li, S. et al. A superionic conductive, electrochemically secure dual-salt polymer electrolyte. Joule 2, 1838–1856 (2018).
Lin, D. et al. A silica-aerogel-reinforced composite polymer electrolyte with excessive ionic conductivity and excessive modulus. Adv. Mater. 30, e1802661 (2018).
Fang, C. et al. Quantifying inactive lithium in lithium steel batteries. Nature 572, 511–515 (2019).
Ju, Z. et al. Biomacromolecules enabled dendrite-free lithium steel battery and its origin revealed by cryo-electron microscopy. Nat. Commun. 11, 488 (2020).
Li, Y. et al. Atomic construction of delicate battery supplies and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).
Liu, Y. et al. Visualizing the delicate lithium with atomic precision: cryogenic electron microscopy for batteries. Acc. Chem. Res. 54, 2088–2099 (2021).
Liu, Y. et al. Self-assembled monolayers direct a LiF-rich interphase towards long-life lithium steel batteries. Science 375, 739–745 (2022).
Sheng, O. et al. In situ building of a LiF-enriched interface for secure all-solid-state batteries and its origin revealed by cryo-TEM. Adv. Mater. 32, 2000223 (2020).
Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of strong–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).
Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium steel batteries. Science 375, 66–70 (2022).
Xu, Y. et al. Atomic to nanoscale origin of vinylene carbonate enhanced biking stability of lithium steel anode revealed by cryo-transmission electron microscopy. Nano Lett. 20, 418–425 (2020).
Zhang, X.-Q., Cheng X.-B, Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate components to render uniform Li deposits in lithium steel batteries. Adv. Funct. Mater 27, 1605989 (2017).
Philippe, B. et al. Photoelectron spectroscopy for lithium battery interface research. J. Electrochem. Soc. 163, A178–A191 (2015).
Ding, J. F. et al. Non-solvating and low-dielectricity cosolvent for anion-derived strong electrolyte interphases in lithium steel batteries. Angew. Chem. Int. Ed. Engl. 60, 11442–11447 (2021).
Han, L. et al. Modulating single-atom palladium websites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem. Int. Ed. Engl. 60, 345–350 (2021).
Xu, C. et al. Interface layer formation in strong polymer electrolyte lithium batteries: an XPS research. J. Mater. Chem. A 2, 7256–7264 (2014).
Xu, H. et al. Excessive-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl Acad. Sci. USA 116, 18815–18821 (2019).
Farhat, D. et al. In direction of high-voltage Li-ion batteries: reversible biking of graphite anodes and Li-ion batteries in adiponitrile-based electrolytes. Electrochim. Acta 281, 299–311 (2018).
Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Correct dedication of Coulombic effectivity for lithium steel anodes and lithium steel batteries. Adv. Power Mater. 8, 1702097 (2018).
Deng, T. et al. In situ formation of polymer-inorganic solid-electrolyte interphase for secure polymeric solid-state lithium-metal batteries. Chem 7, 3052–3068 (2021).
Lee, Y.-G. et al. Excessive-energy long-cycling all-solid-state lithium steel batteries enabled by silver–carbon composite anodes. Nat. Power 5, 299–308 (2020).
Ye, L. & Li, X. A dynamic stability design technique for lithium steel strong state batteries. Nature 593, 218–222 (2021).
Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li steel batteries. Nat. Mater. 16, 572–579 (2017).
Gadim, T. D. et al. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with excessive storage modulus and protonic conductivity. ACS Appl. Mater. Interfaces 6, 7864–7875 (2014).
Ma, J. et al. A technique to make excessive voltage LiCoO2 appropriate with polyethylene oxide electrolyte in all-solid-state lithium ion batteries. J. Electrochem. Soc. 164, A3454–A3461 (2017).
Chen, R. et al. An investigation of functionalized electrolyte utilizing succinonitrile additive for top voltage lithium-ion batteries. J. Energy Sources 306, 70–77 (2016).
Evans, J., Vincent, C. A. & Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987).