Tuesday, May 30, 2023
HomeNanotechnologyCharacterization of the construction and chemistry of the strong–electrolyte interface by cryo-EM...

Characterization of the construction and chemistry of the strong–electrolyte interface by cryo-EM results in high-performance solid-state Li-metal batteries


  • Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. Designing polymers for superior battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Mindemark, J., Lacey, M. J., Bowden, T. & Brandell, D. Past PEO—different host supplies for Li+-conducting strong polymer electrolytes. Prog. Polym. Sci. 81, 114–143 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Cui, G. Cheap design of high-energy-density solid-state lithium-metal batteries. Matter 2, 805–815 (2020).

    Article 

    Google Scholar
     

  • Yue, L. et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Power Storage Mater. 5, 139–164 (2016).

    Article 

    Google Scholar
     

  • Angell, C. A., Liu, C. & Sanchez, E. Rubbery strong electrolytes with dominant cationic transport and excessive ambient conductivity. Nature 362, 137–139 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Alarco, P. J., Abu-Lebdeh, Y., Abouimrane, A. & Armand, M. The plastic-crystalline part of succinonitrile as a common matrix for solid-state ionic conductors. Nat. Mater. 3, 476–481 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Stable-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite progress utilizing cross-linked polyethylene/poly(ethylene oxide) electrolytes: a brand new method for sensible lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Hu, P. et al. Progress in nitrile-based polymer electrolytes for top efficiency lithium batteries. J. Mater. Chem. A 4, 10070–10083 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Excessive polymerization conversion and secure high-voltage chemistry underpinning an in situ fashioned strong electrolyte. Chem. Mater. 32, 9167–9175 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, S. et al. A superionic conductive, electrochemically secure dual-salt polymer electrolyte. Joule 2, 1838–1856 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Lin, D. et al. A silica-aerogel-reinforced composite polymer electrolyte with excessive ionic conductivity and excessive modulus. Adv. Mater. 30, e1802661 (2018).

    Article 

    Google Scholar
     

  • Fang, C. et al. Quantifying inactive lithium in lithium steel batteries. Nature 572, 511–515 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Ju, Z. et al. Biomacromolecules enabled dendrite-free lithium steel battery and its origin revealed by cryo-electron microscopy. Nat. Commun. 11, 488 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, Y. et al. Atomic construction of delicate battery supplies and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Visualizing the delicate lithium with atomic precision: cryogenic electron microscopy for batteries. Acc. Chem. Res. 54, 2088–2099 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Self-assembled monolayers direct a LiF-rich interphase towards long-life lithium steel batteries. Science 375, 739–745 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Sheng, O. et al. In situ building of a LiF-enriched interface for secure all-solid-state batteries and its origin revealed by cryo-TEM. Adv. Mater. 32, 2000223 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of strong–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium steel batteries. Science 375, 66–70 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Xu, Y. et al. Atomic to nanoscale origin of vinylene carbonate enhanced biking stability of lithium steel anode revealed by cryo-transmission electron microscopy. Nano Lett. 20, 418–425 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, X.-Q., Cheng X.-B, Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate components to render uniform Li deposits in lithium steel batteries. Adv. Funct. Mater 27, 1605989 (2017).

    Article 

    Google Scholar
     

  • Philippe, B. et al. Photoelectron spectroscopy for lithium battery interface research. J. Electrochem. Soc. 163, A178–A191 (2015).

    Article 

    Google Scholar
     

  • Ding, J. F. et al. Non-solvating and low-dielectricity cosolvent for anion-derived strong electrolyte interphases in lithium steel batteries. Angew. Chem. Int. Ed. Engl. 60, 11442–11447 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Han, L. et al. Modulating single-atom palladium websites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem. Int. Ed. Engl. 60, 345–350 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xu, C. et al. Interface layer formation in strong polymer electrolyte lithium batteries: an XPS research. J. Mater. Chem. A 2, 7256–7264 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Xu, H. et al. Excessive-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl Acad. Sci. USA 116, 18815–18821 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Farhat, D. et al. In direction of high-voltage Li-ion batteries: reversible biking of graphite anodes and Li-ion batteries in adiponitrile-based electrolytes. Electrochim. Acta 281, 299–311 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Correct dedication of Coulombic effectivity for lithium steel anodes and lithium steel batteries. Adv. Power Mater. 8, 1702097 (2018).

    Article 

    Google Scholar
     

  • Deng, T. et al. In situ formation of polymer-inorganic solid-electrolyte interphase for secure polymeric solid-state lithium-metal batteries. Chem 7, 3052–3068 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Lee, Y.-G. et al. Excessive-energy long-cycling all-solid-state lithium steel batteries enabled by silver–carbon composite anodes. Nat. Power 5, 299–308 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ye, L. & Li, X. A dynamic stability design technique for lithium steel strong state batteries. Nature 593, 218–222 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li steel batteries. Nat. Mater. 16, 572–579 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Gadim, T. D. et al. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with excessive storage modulus and protonic conductivity. ACS Appl. Mater. Interfaces 6, 7864–7875 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Ma, J. et al. A technique to make excessive voltage LiCoO2 appropriate with polyethylene oxide electrolyte in all-solid-state lithium ion batteries. J. Electrochem. Soc. 164, A3454–A3461 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Chen, R. et al. An investigation of functionalized electrolyte utilizing succinonitrile additive for top voltage lithium-ion batteries. J. Energy Sources 306, 70–77 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Evans, J., Vincent, C. A. & Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments