Tuesday, October 4, 2022
HomeNanotechnologyGraphene nanopattern as a common epitaxy platform for single-crystal membrane manufacturing and...

Graphene nanopattern as a common epitaxy platform for single-crystal membrane manufacturing and defect discount


  • Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and knowledge storage on a single chip. Nature 547, 74–78 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Kunert, B. et al. Find out how to management defect formation in monolithic III/V hetero-epitaxy on (100) Si? A crucial assessment on present approaches. Semicond. Sci. Technol. 33, 093002 (2018).

    Article 

    Google Scholar
     

  • Kum, H. et al. Epitaxial progress and layer-transfer methods for heterogeneous integration of supplies for digital and photonic units. Nat. Electron. 2, 439–450 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).

    Article 

    Google Scholar
     

  • Li, Q. & Lau, Okay. M. Epitaxial progress of extremely mismatched III-V supplies on (001) silicon for electronics and optoelectronics. Prog. Cryst. Development Charact. Mater. 63, 105–120 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Yoon, J. et al. GaAs photovoltaics and optoelectronics utilizing releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Raj, V. et al. Layer switch by managed spalling. J. Phys. D: Appl. Phys. 46, 152002 (2013).

    Article 

    Google Scholar
     

  • Jain, N. et al. III–V photo voltaic cells grown on unpolished and reusable spalled Ge substrates. IEEE J. Photovolt. 8, 1384–1389 (2018).

    Article 

    Google Scholar
     

  • Yablonovitch, E., Gmitter, T., Harbison, J. P. & Bhat, R. Excessive selectivity within the raise‐off of epitaxial GaAs movies. Appl. Phys. Lett. 51, 2222 (1987).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, C. W. et al. Epitaxial lift-off course of for gallium arsenide substrate reuse and versatile electronics. Nat. Commun. 4, 1577 (2013).

    Article 

    Google Scholar
     

  • Wong, W. S., Sands, T. & Cheung, N. W. Injury-free separation of GaN skinny movies from sapphire substrates. Appl. Phys. Lett. 72, 599 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Kim, Y. et al. Distant epitaxy via graphene permits two-dimensional material-based layer switch. Nature 544, 340–343 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Shim, J. et al. Managed crack propagation for atomic precision dealing with of wafer-scale two-dimensional supplies. Science 362, 665–670 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kim, J. et al. Precept of direct van der Waals epitaxy of single-crystalline movies on epitaxial graphene. Nat. Commun. 5, 4836 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Kong, W. et al. Polarity governs atomic interplay via two-dimensional supplies. Nat. Mater. 17, 999–1004 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Qiao, Okay. et al. Graphene buffer layer on SiC as a launch layer for high-quality freestanding semiconductor membranes. Nano Lett. 21, 4013–4020 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kim, H. et al. Impression of 2D–3D heterointerface on distant epitaxial interplay via graphene. ACS Nano 15, 10587–10596 (2021).

    Article 

    Google Scholar
     

  • Kazi, Z. I., Thilakan, P., Egawa, T., Umeno, M. & Jimbo, T. Realization of GaAs/AlGaAs lasers on Si substrates utilizing epitaxial lateral overgrowth by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 40, 4903–4906 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Suo, Z. & Hutchinson, J. W. Regular-state cracking in brittle substrates beneath adherent movies. Int. J. Solids Struct. 25, 1337–1353 (1989).

    Article 

    Google Scholar
     

  • Lee, J. H. et al. Wafer-scale progress of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Björkman, T., Gulans, A., Krasheninnikov, A. V. & Nieminen, R. M. Van der Waals bonding in layered compounds from superior density-functional first-principles calculations. Phys. Rev. Lett. 108, 235502 (2012).

    Article 

    Google Scholar
     

  • Faucher, J., Masuda, T. & Lee, M. L. Initiation methods for simultaneous management of antiphase domains and stacking faults in GaAs photo voltaic cells on Ge. J. Vac. Sci. Technol. B 34, 041203 (2016).

    Article 

    Google Scholar
     

  • Rio Calvo, M. et al. Crystal part management throughout epitaxial hybridization of III-V semiconductors with silicon. Adv. Electron. Mater. 8, 2100777 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Zhong, L. et al. Proof of spontaneous formation of steps on silicon (100). Phys. Rev. B 54, R2304 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Bae, S. H. et al. Graphene-assisted spontaneous leisure in direction of dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jiang, J. et al. Service lifetime enhancement in halide perovskite through distant epitaxy. Nat. Commun. 10, 4145 (2019).

    Article 

    Google Scholar
     

  • Asai, H. & Ando, S. Lateral progress technique of GaAs over tungsten gratings by metalorganic chemical vapor deposition. J. Electrochem. Soc. 132, 2445–2453 (1985).

    CAS 
    Article 

    Google Scholar
     

  • Hsu, C.-W., Chen, Y.-F. & Su, Y.-Okay. Nanoepitaxy of InAs on geometric patterned Si (001). ECS J. Strong State Sci. Technol. 1, P140–P143 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Zaima, Okay., Hashimoto, R., Ezaki, M., Nishioka, M. & Arakawa, Y. Dislocation discount of GaSb on GaAs by metalorganic chemical vapor deposition with epitaxial lateral overgrowth. J. Cryst. Development 310, 4843–4845 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Kunert, B. et al. Research of planar defect filtering in InP grown on Si by epitaxial lateral overgrowth. Decide. Mater. Categorical 3, 1960–1973 (2013).

    Article 

    Google Scholar
     

  • Ironside, D. J., Skipper, A. M., García, A. M. & Financial institution, S. R. Overview of lateral epitaxial overgrowth of buried dielectric buildings for electronics and photonics. Prog. Quantum Electron. 77, 100316 (2021).

    Article 

    Google Scholar
     

  • McMahon, W. E., Vaisman, M., Zimmerman, J. D., Tamboli, A. C. & Warren, E. L. Perspective: fundamentals of coalescence-related dislocations, utilized to selective-area progress and different epitaxial movies. APL Mater. 6, 120903 (2018).

    Article 

    Google Scholar
     

  • Kim, H. et al. Position of transferred graphene on atomic interplay of GaAs for distant epitaxy. J. Appl. Phys. 130, 174901 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and pressure fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article 

    Google Scholar
     

  • Plimpton, S. Quick parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y., Huang, L. & Shi, Y. Silica glass toughened by consolidation of glassy nanoparticles. Nano Lett. 19, 5222–5228 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Ethier, S. & Lewis, L. J. Epitaxial progress of Si1−xGex on Si(100)2 × 1: a molecular-dynamics research. J. Mater. Res. 7, 2817–2827 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Bourque, A. J. & Rutledge, G. C. Empirical potential for molecular simulation of graphene nanoplatelets. J. Chem. Phys. 148, 144709 (2018).

    Article 

    Google Scholar
     

  • Nosé, S. A unified formulation of the fixed temperature molecular dynamics strategies. J. Chem. Phys. 81, 511 (1998).

    Article 

    Google Scholar
     

  • Stukowski, A. Visualization and evaluation of atomistic simulation knowledge with OVITO—the open visualization software. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2009).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments